

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES ON πμ*g-CLOSED SETS IN IDEAL GENERALIZED TOPOLOGICAL SPACES V. Gopalakrishnan*¹, M. Murugalingam² & R. Mariappan³

 *¹Research Scholar, Reg No.5396, Research Centre - Manonmaniam Sundaranar University, Assistant Professor, Department of Mathematics, Arignar Anna College, Aralvimozhi, India - 629 301 (Affiliated to ManonmaniamSundaranar University, Abhishekapatti, Tirunelveli, 627012.)
²Director, Department of Mathematics, Sri Sarada College for women, Tirunelveli, Affiliated to ManonmaniamSundaranar University, Abhishekapatti, Tirunelveli, Tamilnadu, India - 627 011
³Assistant Professor, Department of Mathematics, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, India - 642 003

ABSTRACT

We introduce the notions of $\pi\mu$ * g-closed sets by using the notion of μ -pre-I-open sets. Further, we study the concept of $\pi\mu$ * g-closed sets and their relationships in an ideal generalized topological spaces by using these new notions.

2000 Mathematics Subject Classification: 54 A 05.

Keywords: Generalized topology, Ideal, π_{μ} *g-closed sets, π_{μ} *g-open sets.

I. INTRODUCTION

A subfamily μ of the power set P(X) of a nonempty set X is called generalized topology [1] on X if and only if $\Phi \in \mu$ and $U_i \in \mu$ for $i \in I$ implies $\bigcup_{i \in I} U_i \in \mu$. We call the pair (X, μ) a generalized topological spaces (briely GTS) on X. The members of μ are called μ -open sets [1] and the complement of a μ -open is called a μ -closed set. For A $\subset X$, we denote by μ Cl(A) the intersection of all μ -closed sets containing A; and by μ Int(A) the union of all μ -open sets contained in A. The concept of ideals in topological spaces has been introduced and studied by kuratowski [4] and Vaidyanathansamy [6]. An ideal I is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset I$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$ [3]. With respect to the generalized topology μ of all μ -open sets and an ideal I, for each subset A of X, a subset $A^{*\mu}(I)$ or simply $A^{*\mu}$ of X is denoted by $A^{*\mu} = \{x \in X : U \cap A \in \notin I \text{ for every } U \in \mu \text{ such that } x \in U \}$ [3].

Lemma 1.1 [5] Let (X, μ) be a generalized topological space with an ideal I on X and A a subset of X. Then we have the following:

(a) $A^{*\mu}(\mu, \{\Phi\}) = \mu Cl(A)$.

(b) $A^{*\mu}(\mu, P(X)) = \Phi$.

c. If $A \in I$, then $A^{*\mu} = \Phi$.

d. Neither $A \subseteq A^{*\mu}$ nor $A^{*\mu} \subseteq A$.

Lemma 1.2 [5] Let (X, μ) be a generalized topological space with an ideal I on X and A, B a subsets of X. Then we have the following:

a. If $A \subset B$, then $A^{*\mu} \subset B^{*\mu}$ b. $A^{*\mu} = \mu Cl(A^{*\mu}) \subset \mu Cl(A)$ and $A^{*\mu}$ is μ -closed set in (X, μ) (c) $(A^{*\mu})^{*\mu} \subset A^{*\mu*}$

(C)Global Journal Of Engineering Science And Researches

348

[Gopalakrishnan *, 5(11): November 2018] DOI- 10.5281/zenodo.1624669 (d) (A U B)^{* μ} = A^{* μ} U B^{* μ}

ISSN 2348 - 8034 Impact Factor- 5.070

Lemma 1.3 [5] Let (X, μ) be a generalized topological space with ideals I_1 and I_2 on X and A subset of X. Then we have the following: (a) If $I_1 \subset I_2$, then $A^{*\mu}(I_2) \subset A^{*\mu}(I_1)$.

(b) $A^{*\mu}(I_1 \cap I_2) = A^{*\mu}(I_1) \ U \ A^{*\mu}(I_2).$

(e) $A^{*\mu} - B^{*\mu} = (A - B)^{*\mu} - B^{*\mu} \subset (A - B)^{*\mu}$ (f) If $C \in I$, then $(A - C)^{*\mu} \subset A^{*\mu} = (A \cup C)^{*\mu}$.

Lemma 1.4 *[5]*The set operator μ Cl* satisfies the following: (a) $A \subset \mu$ Cl* (A). (b) μ Cl* (\emptyset) = \emptyset and μ Cl* (X) = X. (c) If $A \subset B$, then μ Cl* (A) $\subset \mu$ Cl* (B). (d) μ Cl*(A) $\cup \mu$ Cl* (B) $\subset \mu$ Cl* (A \cup B).

Definition 1.5 Let (X, μ) be a generalized topological space with an ideal I on X. A subset A of X is called

- a. μ - α -I-open if A $\subset \mu$ Int(μ Cl^{*}(μ Int(A))).
- b. μ -semi-I-open if A $\subset \mu$ Cl*(μ Int(A)).
- c. μ -pre-I-open if $A \subset \mu Int(\mu C^*(A))$.
- d. μ -I-regular-open if A = μ Int(μ Cl^{*}(A)).

I. $\pi\mu * g$ -closed sets

Definition 2.1 Let (X, μ) be a generalized topological space with an ideal I on X. A subset H of X is said to be $\pi\mu *$ g-closed if μ Cl * (μ Int(H)) \subset U, whenever H \subset U and U is μ -pre-I open.

Example 2.1 Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $H = \{a, c\}$ is $\pi\mu *$ g-closed.

Definition 2.2 Let (X, μ) be a generalized topological space with an ideal I on X. A subset H of X is said to be $\pi\mu *$ g-open if the complement of H is $\pi\mu *$ g-closed in X. **Example 2.2** In Example 2.1, H = {b} is $\pi\mu *$ g-open.

Proposition 2.1 Let (X, μ) be a generalized topological space with an ideal I on X. For any $H \in I$, H is $\pi\mu *$ g-closed.

proof: Let $H \subset U$, where U is μ -pre-I open. Since $H^* = \emptyset$ for every $H \in I$, then $\mu Cl^*(H) = H$. Now $\mu Int(H) \subset H$ implies that $\mu Cl^*(\mu Int(H)) \subset \mu Cl^*(H) = H \subset U$. Hence for every $H \in I$, H is $\pi \mu * g$ -closed.

Proposition 2.2 Let (X, μ) be a generalized topological space with an ideal I on X and $H \subset X$. If H is μ -pre-I open and $\pi\mu *$ g-closed, then H is μ -semi-I-closed.

Proof: Let H be μ -pre-I open and $\pi\mu *$ g-closed. Let H \subset H where H is μ -pre-I open. Since H is $\pi\mu *$ g-closed, μ Cl * (μ Int(H)) \subset H. Hence H is μ -semi-I-closed.

Proposition 2.3 Let (X, μ) be a generalized topological space with an ideal I on X. Every μ^* -closed is $\pi\mu^*$ g-closed.

Proof: Suppose that H is μ^* -closed in X. Let $H \subset U$ where U is μ -pre-I open. Since H is μ^* -closed, $\mu Cl * (H) = H \subset U$ and $\mu Cl * \mu Int(H) \subset \mu Cl * (H)$, we get $\mu Cl * (\mu Int(H)) \subset U$, thus H is $\pi \mu * g$ -closed.

ISSN 2348 - 8034 Impact Factor- 5.070

Proposition 2.4 Let (X, μ) be a generalized topological space with an ideal I on X and H and F be subsets of X. If H and F are $\pi\mu *$ g-closed sets, then $H \cap F$ is $\pi\mu *$ g-closed.

Proof: Let $H \cap F \subset U$ where U is μ -pre-I open. Since H and F be $\pi\mu *$ g-closed sets in X, we have $\mu Cl^*(\mu Int(H)) \subset U$ and $\mu Cl^*(\mu Int(F)) \subset U$. Hence $\mu Cl^*(\mu Int(H\cap F)) \subset \mu Cl^*(\mu Int(H)) \cap \mu Cl^*(\mu Int(F)) \subset U$ this implies $H \cap F$ is $\pi\mu *$ g-closed set.

Remark 2.1 The following example shows that the union of two $\pi\mu *$ g-closed sets need not be $\pi\mu *$ g-closed.

Example 2.3 Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a, c\}, \{a, d\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then $H = \{a\}$ and $F = \{c\}$ are $\pi\mu * g$ -closed sets. But $H \cup F = \{a, c\}$ is not $\pi\mu * g$ -closed.

Proposition 2.5 Let (X, μ) be a generalized topological space with an ideal I on X and $H \subset X$. If H is $\pi\mu *$ g-closed, then μ Cl*(μ Int(H))– H contains no nonempty μ -pre-I closed set.

Proof: Suppose that F is a nonempty μ -pre-I closed set of $\mu Cl^*(\mu Int(H))$ -H. Now $F \subset \mu Cl^*(\mu Int(H)) - H$ implies that $F \subset \mu Cl^*(\mu Int(H)) \cap H^c$. Hence $F \subset \mu Cl^*(\mu Int(H))$. Now $F \subset H^c$ implies that $H \subset F^c$. Since F^c is μ -pre-I open and H is $\pi\mu *$ g-closed, we have $\mu Cl^*(\mu Int(H)) \subset F^c$ and $F \subset (\mu Cl^*(\mu Int(H)))^c$. Therefore $F \subset (\mu Cl^*(\mu Int(H))) \cap (\mu Cl^*(\mu Int(H)))^c = \emptyset$. That is, $F = \emptyset$. Thus $\mu Cl^*(\mu Int(H)) - H$ contains no non-empty μ -pre-I closed.

Corollary 2.1 Let (X, μ) be a generalized topological space with an ideal I on X and H be $\pi\mu *$ g-closed subset of X. Then H is regular open if and only if $\mu Cl*(\mu Int(H)) - H$ is μ -pre-I closed.

Proof: Let H be $\pi\mu*$ g-closed. If H is regular open, then we have $\mu Cl^*(\mu Int(H)) - H = \emptyset$ which is μ -pre-I closed set. Conversely, let $\mu Cl^*(\mu Int(H)) - H$ be μ -pre-I closed. Then, by Theorem 2.5, $\mu Cl^*(\mu Int(H)) - H$ does not contain any nonempty μ -pre-I closed subset of X and since $\mu Cl^*(\mu Int(H)) - H$ is μ -pre-I closed subset of itself, then $\mu Cl^*(\mu Int(H)) - H = \emptyset$. This implies that $H = \mu Cl^*(\mu Int(H))$ and so H is μ -Iregular open.

Proposition 2.6 Let (X, μ) be a generalized topological space with an ideal I on X. Sup- pose that $K \subset H \subset U$, K is $\pi\mu *$ g-closed relative to H and H is both regular open and $\pi\mu *$ g-closed subset of U, then K is $\pi\mu *$ g-closed relative to U.

Proof: Let $K \subset U$ and U be μ -pre-I open in U. Given $K \subset H \subset U$. This implies that $K \subset H \cap U$. Since K is $\pi \mu *$ g-closed relative to H, $\mu Cl^*(\mu Int(K)) \subset H \cap tt$. Therefore, $H \cap (\mu Cl^*(\mu Int(K))) \subset H \cap U$. Consequently, $H \cap (\mu Cl^*\mu Int(H)) \subset U$. Since H is regular open and $\pi \mu *$ g-closed, we have $H = \mu Cl^*(H)$. Therefore $\mu Cl^*(\mu Int(K)) \subset \mu Cl^*(K) \subset \mu Cl^*(H) = H$. Thus $\mu Cl^*(\mu Int(K)) \cap H = \mu Cl^*(\mu Int(K))$ and $\mu Cl^*(\mu Int(K)) \subset U$. Hence K is $\pi \mu *$ g-closed relative to U.

Corollary 2.2 Let (X, μ) be a generalized topological space with an ideal I on X. Let H be both regular open and $\pi\mu *$ g-closed in U and suppose that F is μ -pre-I closed, then $H \cap F$ is $\pi\mu *$ g-closed.

Proof: We have show that $\mu Cl^*(\mu Int(H \cap F)) \subset U$ whenever $H \cap F \subset U$ and tt is μ -pre-I open. Since F is μ -pre-I closed, $H \cap F$ is μ -pre-I closed in H and hence $\pi\mu *$ g-closed in H. Hence $H \cap F$ is $\pi\mu *$ g-closed in U.

Proposition 2.7 Let (X, μ) be a generalized topological space with an ideal I on X. and $H \subset T \subset S$. Suppose that H is $\pi\mu *$ g-closed in S and T is μ -open, then H is $\pi\mu *$ g-closed relative to T.

Proof: Given $H \subset T \subset S$ and H is $\pi\mu *$ g-closed. Let $H \subset T \cap U$ where U is μ -pre-I open. Since H is $\pi\mu *$ g-closed, $H \subset U$ implies that $\mu Cl^*(\mu Int(H)) \subset U$. Therefore, $T \cap \mu Cl^*(\mu Int(H)) \subset T \cap U$. Thus H is $\pi\mu *$ g-closed relative to T.

350

ISSN 2348 – 8034 Impact Factor- 5.070

Proposition 2.8 Let (X, μ) be a generalized topological space with an ideal I on X and $H \subset X$. Then H is $\pi_{\mu} * g$ -open if and only if $F \subset \mu$ Int(μ Cl * (H)) whenever F is μ -pre-I-closed and $F \subset H$.

Proof: Assume that H is $\pi_{\mu} * g$ -open, then H^c is $\pi_{\mu} * g$ -closed. Let F be a μ -pre-I-closed in H contained in H. Then F^c is a μ -pre-I-open set in X containing H^c. Since Hc is $\pi_{\mu} * g$ -closed, μ Cl * (μ Int(H^c)) \subset F^c. Consequently F $\subset \mu$ Int(μ Cl * (H)).

Conversely, let $\subset \mu Int(\mu Cl * (H))$ whenever $F \subset H$ and F is μ -pre-I-closed in X. Let H be μ -pre-I-open containing H^c , then $G^c \subset \mu Int(\mu Cl * (H))$. Thus $\mu Cl * Int(H^c) \subset G$. This implies that H is $\pi_{\mu} * g$ -open.

Remark 2.2 The notions of $\pi_{\mu} * g$ -closed and μ -semi-I-closed are independent of each other as shown in the following example.

Example 2.4 Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, \{a, c\}, \{b, c\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Then $A = \{c\}$ is $\pi\mu *$ g-closed but not μ -semi-I-closed.

Example 2.5 Let $X = \{a, b, c\}, \mu = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then $A = \{a, b\}$ is μ -semi-I-closed but not $\pi\mu * g$ -closed.

Remark 2.3 The notions of $\pi\mu *$ g-closed and μ - β -I-closed are independent of each other as shown in the following example.

Example 2.6 Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, \{a, c\}, \{b, c\}, X\}$ and $I = \{\emptyset, \{b\}, \{c\}, \{a, c\}\}$. Then $A = \{a, c\}$ is $\pi\mu *$ g-closed but not μ - β -I-closed

Example 2.6 Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, X\}$ and $I = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then $A = \{a, b, d\}$ is μ - β -I-closed but not $\pi\mu * g$ -closed.

Proposition 2.9 Let (X, μ) be a generalized topological space with an ideal I on X and $H \subset X$. If H is $\pi\mu *$ g-closed and $H \subset K \subset \mu Cl*(\mu Int(H))$, then K is also $\pi\mu *$ g-closed.

Proof: Let $K \subset$ tt where U is μ -pre-I open. Now $H \subset K$ implies that $H \subset U$ and tt is μ -pre-I open. Since H is $\pi\mu *$ g-closed, then μ Cl*(μ Int(H)) \subset U. Using hypothesis, μ Cl*(μ Int(K)) \subset U. Thus K is $\pi\mu *$ g-closed.

Proposition 2.10 Let (X, μ) be a generalized topological space with an ideal I on X and A, B be subsets of X. If μ Int(μ Cl*(A)) \subset B \subset A and A is $\pi\mu*$ g-open, then B is $\pi\mu*$ g-open.

Proof: Let μ Int(μ Cl*(A)) \subset B \subset A. Then X – A \subset X – B \subset X – μ Int(μ Cl*(A)) = μ Cl*(μ Int(X – A)). Since X – A is $\pi\mu*$ g-closed, Proposition 2.9, X – B is $\pi\mu*$ g-closed. Hence B is $\pi\mu*$ g-open.

Proposition 2.11 Let (X, μ) be a strong generalized topological space with an ideal I on For each $a \in X$, either $\{a\}$ is μ -pre-I closed or $\{a\}c$ is $\pi\mu * g$ -closed.

Proof: Suppose {a} is not μ -pre-I closed in X. Then {a}c is not μ -pre-I open and the only μ -pre-I open set containing {a}c is $X \subset X$. That is, {a}c $\subset X$. Therefore, μ Cl*(μ Int({a})) $\subset X$, Which implies {a}c is $\pi\mu$ * g-closed.

Proposition 2.12 Let (X, μ) be a generalized topological space with an ideal I on X and $A \subset X$. Then A is $\pi\mu *$ gopen if and only if $F \subset \mu$ Int (μ Cl * (A)) whenever F is μ -pre-I closed and $F \subset A$.

Proof: Suppose that A is $\pi\mu *$ g-open. Let $F \subset A$ and F is μ -pre-I-closed. Then $X - A \subset X - F$ and X - F is μ -pre-I open. Since X - A is $\pi\mu *$ g-closed, then $\mu Cl^*(\mu Int(X - A)) \subset X - F$ and $X - \mu Cl^*(\mu Int(A)) = \mu Cl^*(\mu Int(X - A)) \subset X - F$ and hence $F \subset \mu Int (\mu Cl * (A))$. Conversely, let $X - A \subset U$ where U is μ -pre-I open. Then X - U is μ -pre-I closed. By hypothesis, we have $X - U \subset \mu Int(\mu Cl * (A))$ and hence $(X - A)^* \subset \mu Cl^*(\mu Int(X - A)) = X - \mu Int(\mu Cl * (A)) \subset U$. Therefore X - A is $\pi\mu *$ g-closed and A is $\pi\mu *$ g-open.

ISSN 2348 – 8034 Impact Factor- 5.070

Proposition 2.13 Let (X, μ) be a generalized topological space with an ideal I on X and $A \subset X$. Then A is $\pi\mu *$ g-open $i\mu(\mu Cl * (A)) \subset B \subset A$, then B is $\pi\mu *$ g-open.

Proof: Since A is $\pi\mu *$ g-open, then X – A is $\pi\mu *$ g-closed. By Proposition 2.4, $\mu Cl^*(\mu Int(X - A)) \subset X - A$ contains no nonempty μ -pre-I closed set. Since $\mu Int(\mu Cl * (A)) \subset \mu Int(\mu Cl * (B))$, we have X – $\mu Int(\mu Cl * (X - A)) \subset X - \mu Int(\mu Cl * (X - B))$, which implies that $\mu Int(\mu Cl * (X - B)) \subset \mu Int(\mu Cl * (X - A))$ and so $\mu Int(\mu Cl * (X - B)) - (X - B) \subset \mu Int(\mu Cl * (X - A)) - (X - A)$. Hence B is $\pi\mu *$ g-open.

REFERENCES

- 1. A. Csaszar, Generalized topology, generalized cotinuity, Acta Math. Hungar., 96 (2002), 351-357.
- 2. A. Csaszar, Generalized open sets in generalized topology, Acta Math. Hungar., 106 (2005), 53-66.
- 3. D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- 4. K. kuratowski, Topology, Academic Press, Newyork, 1966.
- 5. Shyampada Modak, Ideal On generalized topological spaces, Scientia Magna, 11(2) (2016), 14-20.
- 6. R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Sci., (20) (1945), 51-61.

